I’m a staff research scientist in the Theoretical Division at the Los Alamos National Laboratory (LANL), New Mexico, where I am part of the Advanced Network Science Initiative (ANSI) as well as the Condensed Matter and Complex Systems Group (T-4). My background is in statistical physics and information theory.
My current work focuses on the design of machine learning techniques for learning probabilistic networks, on understanding the behavior of quantum computers, and on the development of new methods to control and optimize energy networks under uncertainty.
PhD in Computer and Communication Sciences, 2014
EPFL – École Polytechnique Fédérale de Lausanne
MSc in Physics, 2008
EPFL – École Polytechnique Fédérale de Lausanne
BSc in Physics, 2006
EPFL – École Polytechnique Fédérale de Lausanne
Exponential Reduction in Sample Complexity with Learning of Ising Model Dynamics
A. Dutt, A.Y. Lokhov, M. Vuffray, S. Misra,
International Conference on Machine Learning (ICML), 2021, [online], [arXiv]
Learning of Discrete Graphical Models with Neural Networks
Abhijith J., A.Y. Lokhov, S. Misra, M. Vuffray
Advances in Neural Information Processing Systems (NeurIPS), 2020, [online], [arXiv]
Efficient Learning of Discrete Graphical Models
M. Vuffray, S. Misra, A.Y. Lokhov
Advances in Neural Information Processing Systems (NeurIPS), 2020, [online], [arXiv]
Information Theoretic Optimal Learning of Gaussian Graphical Models
S. Misra, M. Vuffray, A.Y. Lokhov
Conference on Learning Theory (COLT), 2020, [online], [arXiv]
Optimal Structure and Parameter Learning of Ising Models
A.Y. Lokhov, M. Vuffray, S. Misra, M. Chertkov
Science Advances, 2018, [online], [arXiv]
Interaction Screening: Efficient and Sample-Optimal Learning of Ising Models
M. Vuffray, S. Misra, A.Y. Lokhov, M. Chertkov
Advances in Neural Information Processing Systems (NeurIPS), 2016, [online], [arXiv]
Programmable Quantum Annealers as Noisy Gibbs Samplers
M. Vuffray, C. Coffrin, Y.A. Kharkov, A.Y. Lokhov
PRX Quantum, 2022,
[online],
[arXiv]
High-quality Thermal Gibbs Sampling with Quantum Annealing Hardware
J. Nelson, M. Vuffray, A.Y. Lokhov, T. Albash, C. Coffrin
Phys. Rev. Applied , 2022,
[online], [arXiv]
Single-Qubit Fidelity Assessment of Quantum Annealing Hardware
J. Nelson, M. Vuffray, A.Y. Lokhov, C. Coffrin
IEEE Transactions on Quantum Engineering, 2021,
[online],
[arXiv]
The Potential of Quantum Annealing for Rapid Solution Structure Identification
Y. Pang, C. Coffrin, A.Y. Lokhov, M. Vuffray
Constraints, 2020,
[online],
[arXiv]
Single-Qubit Cross Platform Comparison of Quantum Computing Hardware
A. Suau, J. Nelson, M. Vuffray, A.Y. Lokhov, L. Cincio, C. Coffrin
arXiv, 2021,
[arXiv]
Quantum Algorithm Implementations for Beginners
J. Abhijith, …, S. Eidenbenz, P. J Coles, M. Vuffray, A.Y. Lokhov
arXiv, 2018,
[arXiv]
The Impacts of Convex Piecewise Linear Cost Formulations on AC Optimal Power Flow
C. Coffrin, B. Knueven, J. Holzer, M. Vuffray
Electric Power Systems Research, 2021, [online],
[arXiv]
Real-Time Anomaly Detection and Classification in Streaming PMU Data
C. Hannon, D. Deka, D. Jin, M. Vuffray, A.Y. Lokhov
IEEE Madrid PowerTech, 2021,
[online],
[arXiv]
Efficient Polynomial Chaos Expansion for Uncertainty Quantification in Power Systems
D. Metivier, M. Vuffray, S. Misra
Power Systems Computation Conference (PSCC), 2020, [online],
[arXiv]
Uncovering Power Transmission Dynamic Model from Incomplete PMU Observations
A.Y. Lokhov, D. Deka, M. Vuffray, M. Chertkov
IEEE Conference on Decision and Control (CDC), 2018, [online]
Online Learning of Power Transmission Dynamics
A.Y. Lokhov, M. Vuffray, D. Shemetov, D. Deka, M. Chertkov
Power Systems Computation Conference (PSCC), 2018, [online], [arXiv]
Graphical Models for Optimal Power Flow
K. Dvijotham, M. Chertkov, P. Van Hentenryck, M. Vuffray, S. Misra
Constraints, 2017, [online], [arXiv]
Monotonicity of Dissipative Flow Networks Renders Robust Maximum Profit Problem Tractable: General Analysis and Application to Natural Gas Flows
M. Vuffray, S. Misra, M. Chertkov
IEEE Conference on Decision and Control (CDC), 2015, [online], [arXiv]